Journal Articles

Tea Flavanols Block Advanced Glycation of Lens Crystallins Induced by Dehydroascorbic Acid.

December 01, 2014

Tea Flavanols Block Advanced Glycation of Lens Crystallins Induced by Dehydroascorbic Acid. Chem Res Toxicol. 2014 Dec 1, Zhu Y, Zhao Y, Wang P, Ahmedna M, Ho CT, Sang S.

NC A&T University

Abstract

Growing evidence has shown that ascorbic acid (ASA) can contribute to protein glycation and the formation of advanced glycation end products (AGEs), especially in the lens. The mechanism by which ascorbic acid can cause protein glycation probably originates from its oxidized form,dehydroascorbic acid (DASA), which is a reactive dicarbonyl species. In the present study, we demonstrated for the first time that four tea flavanols, (-)-epigallocatechin 3-O-gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin 3-O-gallate (ECG), and (-)-epicatechin (EC), could significantly trap DASA and consequently form 6C- or 8C-ascorbyl conjugates. Among these four flavanols, EGCG exerted the strongest trapping efficacy by capturing approximate 80% of DASA within 60 min. We successfully purified and identified seven 6C- or 8C-ascorbyl conjugates of flavanols from the chemical reaction between tea flavanols and DASA under slightly basic conditions. Of which, five ascorbyl conjugates, EGCGDASA-2, EGCDASA-2, ECGDASA-1, ECGDASA-2 and ECDASA-1, were recognized as novel compounds. The NMR data showed that positions 6 and 8 of the ring A of flavanols were the major active sites for trapping DASA. We further demonstrated that tea flavanols could effectively inhibit the formation of DASA-induced AGEs via trapping DASA in the bovine lens crystallines-DASA assay. In this assay, 8C-ascorbyl conjugates of flavanolswere detected as the major adducts using LC-MS. This study suggests that daily consumption of tea flavanols beverage may prevent proteinglycation in lens induced by ascorbic acid and its oxidized products.

PMID:
25437149
[PubMed – as supplied by publisher]

Comments are closed.

Connect With Us